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ANTI-GAUSSIAN QUADRATURE FORMULAS 

DIRK P. LAURIE 

ABSTRACT. An anti-Gaussian quadrature formula is an (n + 1)-point formula 
of degree 2n - 1 which integrates polynomials of degree up to 2n + 1 with an 
error equal in magnitude but of opposite sign to that of the n-point Gaussian 
formula. Its intended application is to estimate the error incurred in Gaussian 
integration by halving the difference between the results obtained from the two 
formulas. We show that an anti-Gaussian formula has positive weights, and 
that its nodes are in the integration interval and are interlaced by those of the 
corresponding Gaussian formula. Similar results for Gaussian formulas with 
respect to a positive weight are given, except that for some weight functions, 
at most two of the nodes may be outside the integration interval. The anti- 
Gaussian formula has only interior nodes in many cases when the Kronrod 
extension does not, and is as easy to compute as the (n + 1)-point Gaussian 
formula. 

1. INTRODUCTION 

Let w be a given weight function over an interval [a, b] and let G(n) be the 
corresponding n-point Gauss-Christoffel quadrature formula 

n 

(1) ~~~~~~G(n) f :=EWin) f (Xin) ) 
i=1 

of degree 2n - 1 for the integral 
b 

(2) If j f(x)w(x) dx. 

The defining property of Gwn) is that 

(3) G(n[)p=Ip Vp E p2n-1 

where P' is the space of polynomials of degree not greater than m. 
There are various questions of interest regarding the existence and other proper- 

ties of quadrature formulas defined by a set of equations. To make the terminology 
precise, we shall say: 

* The formula exists if the defining equations have a (possibly complex) solu- 
tion. 

* The formula is real if the points and weights are all real. 
* A real formula is internal if all the points belong to the (closed) interval of 

integration. A node not belonging to the interval is called an exterior node. 
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* The formula is positive if all the weights are positive. 

The Gaussian formulas are known to be internal and positive. 
In practice it is not easy to find an accurate estimate of the error If - G(7) f 

when f is some function that has not been subjected to very much analysis. The 
usual method is to use the difference Af - G$7) f, where A is a quadrature formula 
of degree greater than 2n - 1. Any such quadrature formula A requires at least 
n + 1 additional points. This is because, if we append n arbitrary points to Gwn) 
the weights of the new points simply turn out to be 0 since the weights of a (2n)- 
point formula of degree at least 2n - 1 are unique. In fact, any set of n + 1 points 
together with the original n points can be used to construct such a formula, because 
Af -Gw)f is a null rule [5] of degree 2n, that is, a functional that maps polynomials 
of degree up to 2n to zero, but not polynomials of exact degree 2n + 1. It is known 
[12] that a null rule of degree 2n based on 2n + 1 points must be a multiple of 
the (2n)th divided difference on those points. One may therefore view the use of 
Af -G$(n) f as a numerical approximation to the theoretical error of the Gaussian 
formula in terms of the (2n)th derivative obtained from the Peano kernel theorem 
[13]. 

Several possibilities for constructing a formula A with n + 1 extra points have 
been singled out in the literature: 

1. The (n + 1)-point Gauss-Christoffel formula G7n+?1) has degree 2n + 1 and can 
therefore serve as the formula A. It has been noted [3] that this procedure 
can be very unreliable. 

2. For certain weight functions (including w(x) = 1) it is possible to find a 
(2n + 1)-point formula containing the original n points, with degree at least 
3n + 1. Such formulas were first computed for the case w(x) = 1 by Kronrod 
[11], and have found widespread acceptance as components of automatic quad- 
rature algorithms [18]. Developments up to 1988 are surveyed by Gautschi 

[7]. The Kronrod formulas are of optimal degree, given that the points of G($i) 
are to be included, but often the weight function w is such that Gw$) does not 
possess a real Kronrod extension, e.g. the Gauss-Laguerre and Gauss-Hermite 
cases [10]. 

3. In cases where no real Kronrod extension exists, Begumisa and Robinson [2] 
try to find a suboptimal extension, that is, a (2n + 1)-point formula of degree 
greater than 2n but less than 3n + 1, by gradually reducing the degree aimed 
at until an extension is found to exist. Patterson [17] shows that such formulas 
can be found easily by his software package [16]. 

The idea of constructing two numerical methods with error terms of the same 
modulus but opposite signs has been used in the numerical solution of initial value 
problems in ordinary differential equations [4, 19, 20]. In this paper we consider 
the anti-Gaussian quadrature formula 

n+1 

(4) H(n+l)f =n+l) (&+1) 
i=l 

which is designed to have an error precisely opposite to the error in the Gauss- 
Christoffel formula G(n), that is, 

(5) I-II (n+l)n = -(In_ -G(n)n nf P . 
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The error If - Gw f can then be estimated as (H('+7)_f -yGn)f)/2. In effect, we 
are using a (2n + 1)-point formula L(2n+l) - (G(n) + H(n+7))/2 of degree 2n + 1 
to estimate the integral. We shall call this formula an averaged Gaussian formula. 
One can think of {G n), L(2n+l) } as the first two terms in a stratified sequence 
[14] of quadrature formulas (each formula is a linear combination of the previous 
formula and a formula containing new points only). 

The averaged Gaussian formula is of course also a suboptimal extension (and 
therefore subsumed in the theory of [16]), but we shall show that it has significant 
theoretical and practical properties. In particular, it always exists, it is an almost 
trivial task to construct it, it always has positive weights, its nodes are always real, 
and at worst two nodes may be exterior. 

2. CONSTRUCTION OF ANTI-GAUSSIAN QUADRATURE FORMULAS 

From (5) we see that 

(6) HL(nl)p = 2Ip - G(n)p P E IP2n+l 

By comparing (6) with (3), we see that H(57L1 is the Gaussian formula for the 
linear functional 21- Gw). The points and weights of H4IJnn1 can therefore be 
found by the following (now classical) algorithm: 

1. Find the coefficients {aj, j = 0,1,... ,rn} and {/3j, j = 1,2,.. .,n} which 
appear in the recurrence relation 

r_ (X) = 0, 

(7) 7ro(x) = 1, 

7j+l (X)= (x-aj )rj(x)--j 3rj- (x), j = 0,1,...,n, 

satisfied by the polynomials {rr j} orthogonal with respect to the linear func- 
tional 21 - G$). The coefficient 0/ can be any finite number: following 
Gautschi [6], we put /3o = (21- GQ n))ror in other words, the functional applied 
to the constant polynomial 7r0. 

2. As shown by Golub and Welsch [9], the nodes of the quadrature formula are 
the eigenvalues, and the weights are proportional to the squares of the first 
components of the eigenvectors, of the symmetric tridiagonal matrix 

ao A3i 

A 131 alV0 

/3~ ~ V/3n2 

The coefficients { j , j = 0, 1,.. , n} and {,3j, j = 1, 2, ... ., n} are given by the 
well-known formulas of Stieltjes: 

(8) a- (2 )(x7r), j = 0,1,..., n; 
(21 - G 

(9) di=(I((n)) (7r2) j =12...,n. 

The proper use of (7) in conjunction with (8-9) is normally a task requiring great 
delicacy (thoroughly discussed by Gautschi in [6]), but in the present case the 
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task is easy, since we shall show that the required coefficients may be obtained 
trivially from the corresponding coefficients for the original linear functional I. In 
the classical cases, the latter coefficients are known explicitly [1]; in others, the 
software (e.g. [8]) used to compute G$(n) computes the recurrence coefficients as a 
preliminary step. The details are as follows: 

Let {pj } be the sequence of polynomials orthogonal to the original weight func- 
tion w, which satisfy the recurrence relation 

P-i(x) = 0, 

pO(x) = 1, 

pi+, ()= (x-aj)pj(x) -bjpj_.(x), j =0, 1,. 

As before, bo = Ipo, and the other recurrence coefficients satisfy the relations 

I(xp) - a 2 j= ,1,.. 
(10) (PJI) 

I(pj2) 
I(p)7 j-l12. 

The crucial observation is that because of the property (3), (21 - G$)p =I 
for p E p2n-1, and therefore 

(11) og~~~~j = aj, j= O, 1, ..., n -1 
(12) oj = bj, j = 0, 1,... n - 1; 

(13) r7 =Pj, j = 0,1,... ,n. 

We need only compute an and 3n. Since the points xi, i = 1, 2,.. , n, in (1) are 
the zeros of7rn, the result of applying G$37 to any expression which contains 1rn as 
a factor is 0. Using this observation, as well as the fact that the degree of 7n_l is 
less than 2n - 1, we find that 

21(x7rn) 
(14) an 

- 2I(7r2) 

(15) = an; 

(16) -n = I(r ) 

(17) = 2bn. 

In other words, we take precisely the same set of recurrence coefficients as when 
computing the Gauss-Christoffel formula G w except that the last coefficient 3n 
is doubled. The rest of the computation proceeds exactly as usual. 

3. THEORETICAL PROPERTIES 

Theorem 1. The anti-Gaussian formula HLn+l) has the following properties. 
1. The weights A<i > O, i = 1, 2,. . ., n + 1. 
2. The nodes (j, i = 1,2,... , n + 1, are all real, and are interlaced by those of 

the Gaussian formula Gn i. e., 

t1 < Xl < ?2 < X2 < ..., < Xn < z4i 
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3. The inner nodes are in the integration interval, i.e. 

6i(3 i fn E [a, b] 

4. 4i E [a,b] if and only if Pn+>(a) >( bn, and (n+l E [a,b] if and only if 
p~~~~i(b)P >() 

pn+I(b) > bnI where pj, j = 0,,... , n + 1, are the orthogonal polynomials 
and bj, j = 1, 2,... , n, the recurrence coefficients corresponding to the origi- 
nal weight function as in (10). 

Proof. Since bn > 0, 2bn is real, and the nodes are therefore eigenvalues of a 
real symmetric matrix, thus real. The weights are trivially positive since they are 
formed as squares of real quantities in the Golub-Welsch algorithm. The interlacing 
property of the nodes follows from the fact that the recurrence coefficients for G(n) 
are equal to the first n recurrence coefficients for H(W+l). Therefore the Gaussian 
nodes xi are the eigenvalues of the n x n leading submatrix of the symmetric 
tridiagonal matrix with eigenvalues (i, and Cauchy's interlace theorem (see e.g. 
[15, p.186]) can be applied. 

From the interlacing property it follows that all the inner nodes are in the interval 
[a, b]. We derive the condition for xn+l to be in [a, b]: the derivation for xi is similar. 

Any real polynomial with leading coefficient 1 and having at most one zero to 
the right of b is negative, zero, or positive at b according to whether it has one 
zero greater than b, a zero at b, or no zeros greater than or equal to b. Therefore, 
Pn-i (b) and Pn+? (b) are both positive; and rn+l (b) is positive if and only if it has 
no zeros > b. (7rn+l cannot have more than one zero > b because of the interlacing 
property.) FRom the equations (obtained by using (7), (10), (13), (15) and (17)) 

Pn+I(x) = (x - an)pn(X) - bnpi-(X), 

rn +I(x) = (x - an)Pn (X) -2bnpj -I (X)v 

we note that rn+l = Pn+ - bnpn I. Therefore, 1rn+l (b) > 0 if and only if Pn+I(b) > 

bn O 

For the classical weight functions, the recurrence coefficients and the values of 
the orthogonal polynomials at the end points are explicitly known. We thus obtain 
the following corollary of Theorem 1. 

Theorem 2. The anti-Gaussian formulas corresponding to the following weight 
functions are internal and positive: 

1. w(X) = (1-x2), over [-1, 1] with ag > - 1 (Gegenbauer}, including the special 2 
cases 
(a) w(x) = 1 over [-1, 1] (Legendre), 
(b) w(x) = (1 -x2) 2 over [-1,1] (Chebyshev), 
(c) w(x) = (1 - x2)f over [-1, 1] (Chebyshev, second kind). 

2. w(x) = x'e-x over [0, ox) with a > -1 (generalized Laguerre). 
3. w(x) = lxlae-x over (-oo, oo) with a > -1 (generalized Hermite). 

Proof. The Gegenbauer weight is a special case of the Jacobi weight, treated be- 
low. For the generalized Hermite weight, the result is trivial, since the integration 
interval contains all real numbers. For the generalized Laguerre weight, we use Ta- 
bles 22.3 (leading coefficients), 22.4 (special values), and 22.7 (recurrence relations) 
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from [1], to obtain 

bn= n(n + r), 

Pn(O) = (-1)n n! (n?a) 

and hence 

Pn?1 (0) Pn-i(O?) = 
(n?+ca,)(n?+cw +1) > bn 

since a > -1. El 

In the case of the Jacobi weight function, the characterization is not so simple. 

Theorem 3. The anti- Gaussian formula HLn?l) with n > 1 corresponding to 
w(x) = (1- x) (1 + x) with a, 3 > -1 is internal if and only if 

(18) (2a+ )n?2+ (2a+ 1) (a+o+ I)n+ 
1 

(a+ 1) (a+0) (a+o+ 1) > 0 

and 

(19) ~(20+1)n2+(20+1)(a+O+l)n+ (0+1)(a+O)(a+0+1) > 0. 

Proof. Using the same tables from [1], we obtain 

b - ~4n(n +a)(n + 0)(n + a+ 0) 

(2n+a?+ 3- 1)(2n+ca+ 3)2(2n+ca+/3+ 1)' 

2n n+ce 
Pn (1) = V 

n( J 

(2n?ce?I3) 
n 

and hence 

Pn+l(l) (n + a+ 1)(n+a + 0 + 1)(n + 0+O 

bnpn-1(1) n(n + ?) (n + 2+0 + 1) 

(2a+ l)n(n+a+0+ 1) + 1(aR+1)(aR+ )(aR+0+1) 

n(n + ?)(n + j+1 + 1) 

Since the denominator in the last fraction and bn are both positive, by Theorem 1 
the largest node of HwV+1) is in the interval if and only if the numerator is positive. 
The proof for the leftmost node is similar. El 

Theorem 3, while precise, is not very enlightening. We therefore offer a weaker 
corollary. 

Theorem 4. The anti-Gaussian formulas Hw n = 1,2,..., for the Jacobi 

weight w(x) = (1 - x) (1 + x)O are internal and positive when a and /3 satisfy the 
following four inequalities: 

(20) a > 2 

(21) /3> - 

1~~~~~~~~~~2 
(22) (2a + 1)(a + 3 + 2) + ? (a + 1)(a + ,)(a + 0 + 1) > 0, 2 

(23) (2/3+ 1)(a + 3+ 2) +-I(/3?1)(a ?/3)(a +?/3?1) >0. 
2 
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-5+3V2_ 9+4v/-) 

-0.5 - .. . 

-1 -I I I I 

-1 -0.5 0 0.5 1.0 

FIGURE 1. Anti-Gaussian formulas for the Jacobi weight are in- 
ternal for all n when ag and /3 are within the unbounded region to 
the north-east of the heavy lines 

Proof. When (20-21) are satisfied, the coefficients of n2 and n in the quadratic 
polynomials are positive. These polynomials are therefore increasing functions of 
n, and we need merely test whether they are positive when n = 1. Inequalities 
(22-23) are obtained by putting n = 1 in (18-19). D 

When ag = /3, inequality (22) reduces to (ag + 1)(2ac + 1)(2 + a) > 0, which is 
satisfied when 2 > '-, thus proving Case 1 of Theorem 2. 

Figure 1 shows the region in the (ar, ,B) plane in which the conditions of Theorem 
4 are satisfied. Outside that region, the anti-Gaussian formula for at least one value 
of n has an exterior node. 

Some sufficient conditions for an anti-Gaussian formula for the Jacobi weight to 
require exterior nodes can be deduced from Theorem 3. We mention only cases 
with ag < / : other cases can be obtained by interchanging ag and /3. Denote the 
left-hand side of (18) by f(n,ca,/3); we have: 

1. For ai < -1 the formulas for sufficiently large n require an exterior node, 
because the coefficient of n 2 is negative. 

2. For a =- 2 and /3 = 0, the formulas require an exterior node for all n, because 

f(n, -2')= 
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3. For /32 < 1 and a close enough to- I, the formulas require an exterior node 
for n small enough, because f (n, - 1 + , /) has zeros at 

n = 2 (-2I-d- i -) 

where 

The positive zero is therefore o(E-1/2). 

We conclude with the remark that when ae = / = 21 the averaged Gaussian 

formula L$$n+1) (G(n) + H(L))/2 actually is the same as the Kronrod formula 
(2n+ 1). This property follows from the facts that the Kronrod formula in its turn 

is the same as a formula of higher degree, that is, a (2n+ 1)-point Gaussian, Lobatto 
or Radau formula, as the case may be [7], and that in those cases the weights of 
the old points are precisely half of their previous values. 
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